Phase Separation and Component Crystallization in Freezing Segment of Protein and Amino Acid Lyophilization
K-I. Izutsu, H. Shibata, H. Yoshida, Y. Goda
National Institute of Health Sciences

Purpose
Many freeze-dried protein formulations contain glass-forming stabilizing excipients (e.g., trehalose) that protect proteins from dehydration-induced irreversible conformation changes and chemical changes during storage. Some amino acid excipients also form glass-state solids upon lyophilization. The purpose of this study was to elucidate miscibility of proteins and amino acid excipients in frozen solutions and its effect on their crystallization.

Methods
Aliquots of frozen solutions containing a model protein (e.g., recombinant human albumin) and amino acids were applied for heating thermal analysis from -70°C to obtain glass transition temperatures of maximally freeze-concentrated solutes T_g and solute crystallization peaks. Some frozen solutions were annealed at elevated temperatures (e.g., -10°C) before their second scan from -70°C.

Results
Some amino acid excipients (e.g., L-valine, glycine) showed high propensity to crystallize during the freezing process. Other excipients freeze-concentrated into narrow non-ice regions between ice crystals remained amorphous (e.g., sodium L-glutamate, L-arginine hydrochloride) or crystallized (e.g., L-histidine hydrochloride) upon the annealing. Frozen solutions containing the protein and amorphous excipients showed single or double T_g transitions that indicate their varied miscibility depending on the combinations and concentration ratios. Many protein-rich frozen solutions showed single T_g transitions in the first heating scans and after their annealing, indicating maintenance of the amorphous concentrated solute mixture. Frozen solutions containing rHA and higher mass ratio of L-Arg HCl showed double T_g transitions. The transition temperature profiles suggested separation of the non-crystalline solutes into the solute-mixture and excipient phases. Frozen solutions containing rHA and higher mass ratio of L-His HCl showed the amorphous/amorphous phase separation and following crystallization of the excipient.

Conclusion
The phase separation should allow nucleation of amino acid crystals in the excipient-dominant concentrated phase. Information on the solute mixing state should be valuable for appropriate use of the amino acid excipients either as a crystalline bulking agent or an amorphous stabilizer in freeze-dried formulations.