High Performance Liquid Chromatography Method (HPLC) for the Determination of Ketamine and Lidocaine Concentrations in a Topical Cream Formulation

J. Renukunta, J. Chen, B. Hall
South College School of Pharmacy

Purpose
The goal of this study was to develop and validate a fast, simple and sensitive isocratic reverse-phase high performance liquid chromatography method (HPLC) for the determination of ketamine and lidocaine concentrations in a topical cream formulation.

Methods
The chromatographic separation of ketamine and lidocaine was achieved on a Cyano analytical reverse-phased column, using acetonitrile: ammonium acetate buffer (80:20, v/v) mobile phase. The column was equilibrated with the mobile phase flowing at 1.0 mL/min for about 30 mins prior to injection. The liquid chromatography behavior of ketamine and lidocaine was monitored with a photodiode-array UV detector at 200-400nm. For validation purpose ketamine and lidocaine was extracted from the compounded cream by treating with a mixture of acetonitrile and 0.1N HCl in water (90:10), samples were then filtered through a 0.22um syringe filter and injected (5 µL) into the HPLC for studying the stability of the drugs in the cream.

Results
A simple and sensitive isocratic reverse-phase high performance liquid chromatography method (HPLC) is developed. The signal was optimized at 254 nm. The standard calibration curves for ketamine and lidocaine were linear (R^2 value = 0.998 and 0.999 respectively) over the range of 0.25-10 mg/mL. Total run time was about 6 min. Retention times for ketamine and lidocaine were 5mins and 4.3 mins respectively. Both ketamine and lidocaine were found to be chemically stable for a period of 120 days. This method was validated and found to be more beneficial for the routine analysis of topical cream formulations involving ketamine and lidocaine.

Conclusion
This method is very simple, sensitive, fast and robust with short runtime (6 min) to enable the processing of various quality control samples.