Polymeric Micellar Co-delivery of Resveratrol and Curcumin to Mitigate In Vitro Doxorubicin Induced Cytotoxicity

D. A. Rao, L. Janssen-Carlson
Pacific University

Purpose
To investigate micellar delivery of curcumin (CUR) and resveratrol (RES) in combination with doxorubicin (DH) on cancer cells in vitro. CUR has chemotherapy enhancing properties which may enhance cytotoxicity in SKOV-3 (human ovarian adenocarcinoma cells). CUR and RES have strong antioxidant properties which provide protective effects on H9C2 (rat embryonic derived myocytes).

Methods
Pluronic® F127 with RES:CUR 5:1 micelles were prepared by solvent casting method. Micelle size was characterized by Dynamic Light Scattering. Micelle loading was assessed by HPLC on a C18 column. Cytotoxicity of RES, CUR, DH in DMSO and RES:CUR 5:1 micelles with DH for a final ratio of all drugs at 10:2:1 was assessed in SKOV-3 and H9C2 cells using Cell Titer Blue Cell Viability Assay by fluorescence (EX/EM 560/590 nm).

Results
Micelle sizes were ~30 nm and RES and CUR loading in micelles was 13.14 mM and 2.63 mM respectively. The IC50 values for each treatment group were as follows: RES 53.9 µM, CUR 5.6 µM, DH 0.1 µM, micelles RES:CUR:DH 0.1 µM in SKOV-3 cells and RES 153.3 µM, CUR 10.7 µM, DH 0.01 µM, and micelles RES:CUR:DH 0.04 µM in H9C2 cells. The combination index (CI) for micelles RES:CUR:DH 10:2:1 is 0.58 in SKOV-3 indicating synergy and 3.43 in H9C2 indicating antagonism.

Conclusion
The micellar formulation of RES and CUR upon co-administered with DH at therapeutically relevant concentrations can exhibit synergy in vitro in cancer cells while being cardioprotective. This system provides potential for further development as a therapeutic option for patients using doxorubicin for chemotherapy.