Effect of ET\textsubscript{B} Receptor Agonist, IRL-1620, on Beta Amyloid (A\textbeta) Induced Oxidative Stress and Cognitive Impairment in Rats

A. Gulati, S. Briyal, C. Shepard
Midwestern University

Purpose
Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by cerebrovascular and neuronal dysfunctions leading to a progressive decline in cognitive functions. Endothelin (ET) and its receptors have been considered as therapeutic targets in the treatment of AD. Recent studies indicate that stimulation of ET\textsubscript{B} receptors may provide neuroprotection. The purpose of this study was to determine the effect of selectively activating the ET\textsubscript{B} receptors following A\textbeta-induced cognitive impairment and oxidative stress in normal and diabetic rats.

Methods
Adult male Sprague-Dawley rats were treated with A\textbeta\textsubscript{1-40} (20 µg in 3 equally divided doses) in the lateral cerebral ventricles using sterotaxically implanted cannulas. A\textbeta was administered on day 1, 7 and 14 and all experiments were performed on day 15. The rats were treated chronically with ET\textsubscript{B} receptor agonist (IRL-1620) or antagonist (BQ788) for 14 days. Oxidative stress markers assessed were malondialdehyde (MDA), glutathione (GSH) and superoxide dismutase (SOD). Learning and memory behavior was assessed using the Morris water maze.

Results
A\textbeta treatment in normal and diabetic rats produced a significant (p<0.0001) increase in malondialdehyde (MDA) levels (516.13 ± 14.02 and 531.58 ± 10.21 nmol/g wet tissue, respectively) compared to sham group (112.1 ± 1.82 and 114.31 ± 2.05 nmol/g wet tissue, respectively). Antioxidants (superoxide dismutase and reduced glutathione) decreased following A\textbeta treatment compared to sham group. Treatment with IRL-1620 reversed these effects, indicating that ET\textsubscript{B} receptor activation reduces oxidative stress injury following A\textbeta treatment. Animals pretreated with BQ788 showed similar oxidative stress damage compared to vehicle group. In Morris swim task, A\textbeta treated rats showed a significant impairment in spatial memory. Rats treated with ET\textsubscript{B} receptor agonist, IRL-1620, significantly reduced the cognitive impairment induced by A\textbeta. However, blockade of ET\textsubscript{B} receptors by BQ788 followed by either vehicle or IRL-1620 treatment resulted in cognitive impairment similar to those of rats treated with vehicle alone. BQ788 blocked IRL-1620 induced improvement in cognition and oxidative damage.

Conclusion
The present study demonstrates that IRL-1620 administration prevents cognitive impairment and oxidative stress induced by A\textbeta suggesting that ET\textsubscript{B} receptor stimulation may be useful in the treatment of Alzheimer’s disease.